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A two-dimensional random-walk problem is investigated, where a vector fixed in 
amplitude (magnitude) is added to one that is random in phase (direction angle). 
This problem can arise from a study of the effect of multipath interference from a n  

acoustic or electromagnetic-wave source, where an arrival of constant amplitude is 
combined with an incoherent background of randomly scattered components of the 
incident field. The source is considered to have harmonic time dependence. This study 
follows from an earlier paper, in which the required properties of the incoherent 
back~ound were derived. In the present study, the joint distribution of the resultant 
amplitude and of the phase angle between the resultant and the fixed arrival is de- 
termined. Further, expressions are developed for the first and second moments of the 
resultant phase, amplitude, decibel-amplitude, and intensity. Many properties of these 
moments are described. 

KEY WORDS: Propagation; acoustics; electromagnetic waves; multipath inter- 
ference; scattering; incoherence; random walk. 

1. I N T R O D U C T I O N  

In  a previous study, m the acoustic or electromagnetic-wave field scattered by a 

stochastic boundary ,  or by a r a n d o m  configurat ion of objects in  space, was considered. 

In  particular,  condit ions were examined for the scattered field to be incoherent.  
The total field at a receiving point  may result from the scattered and  incident  
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fields combining in phase interference. This paper investigates the total field when 
the scattered field is incoherent. The incident radiation is considered to have harmonic 
time dependence with circular frequency co. 

At a point in space and at a time % the randomly scattered field has the value 

An exp[i(q~n' -k coT)], An ~> 0, --zr ~ q)R' < ~v (1) 

where An and q)n' denote its random amplitude and phase, respectively. The incident 
field at the same point and time has the value 

Ao exp[i(~o + cow-)l, Ao >~ 0 (2) 

where the amplitude Ao and phase q~o are not random and depend on the position of 
the observation point in space. Therefore, the total field there has amplitude A and 
phase qs', which are given by 

Ae ~" = Ao exp(iq)o) + An exp(iq~n'), A ~> 0, --rr ~< ~ '  < 7r (3) 

where the factor e ~" has been suppressed in all terms in the equation. If  the terms 
in Eq. (3) are considered to be vectors in a plane, then the total field is represented 
by a vector sum of two components: the vector Ao exp(i~o) is constant in both its 
length Ao and its direction ~o,  and is called the fixed component; the vector 
An exp(iq)e') is random in both length and direction, and is called the random 
component. Therefore, the determination of the probability distribution of the resultant 
vector Ae ~" is a problem in random walk. 

Since e ~ '  is a periodic function, a unique determination of ~ '  from Eq. (3) 
requires the restriction of ~ '  to some interval of length 2zr tad. As observed in the 
above equation, the interval [--zr, ~r) is selected. However, this choice is quite arbitrary 
and, as we will observe shortly, is subject to change. 

The joint probability density function of the random variables An and q~e' is 
denoted by t(an, (an). The assumption of an incoherent, random component has been 
shown to imply m 

t(aR, ~,be) = u(~bn)gr(ae) (4) 

where u(~R) is the probability density of a random variable uniformly distributed on 
the interval [--~r, ~r), so that 

l~27r)-z for --~r ~< ~bn <~r 
U(~R) for ~n elsewhere (5) 

The function gr(ae) is the probability density of A~, and is studied in more detail in 
Ref. 7. Since AR ~> 0, it should also be noted that 

gr(aR) = 0 for aR < 0 (6) 

If  the real and the imaginary parts of AR exp(iq~') are jointly Gaussian- 
distributed, regardless of whether the random component is incoherent, then the 
probability distributions of A and q~' are known. (a,5) If, in addition to Eq. (4), gr(a~) 
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is the probability density for the Rayleigh distribution, then A has the Rice-Nakagami 
distribution, m In this paper, however, we shall assume only the validity of  Eq. (4). 

Suppose now that q)o is not constant, but fluctuates as some stochastic or deter- 
ministic function of time. Multiplying Eq. (3) by exp(--iqso) and noting the periodicity 
of  the function e% we obtain 

A e  ~ = Ao -+- AR exp(i~bR), --~r ~< q) < % --zr ~< ~ < zr (7) 

where 3 

q} --= q~' - -  (bo (mod 2~r), ~ e  --= g)R' --  ~bo (mod 27r) (8) 

I f  q)R' is independent of  q)o and uniformly distributed on the interval [--rr, rr), then 
~ a  has been shown to be uniformly distributed on the same interval. (6) Furthermore, 
if AR is independent of  the vector (q}~', ~0), then AR can be shown to be also indepen- 
dent of  q)R- Therefore, the joint probability density of  AR and (b R is given by Eq. (4). 
Since Eq. (7) is identical to Eq. (3) (with ~bo -= 0), the random-walk problem having a 
fluctuating ~o is reduced to the earlier one for which q~o is constant. 

The problem of a fluctuating ~o may have application to situations where the 
radiation reaches the receiving point by way of two different paths of  propagation. 
Consider, for example, an earth-bound radio transmitter. I f  the receiving point is 
near the horizon of the transmitting antenna, then the signal may be received by 
tropospheric scattering as well as by a path optically refracted through the atmosphere 
nearer to the earth's surface. (2) The scattered field may be incoherent, and the refracted 
signal can be constant in amplitude but may vary in phase. Since tropospheric scatter- 
ing results from a process which is different from that governing the refracted path, 
the phase qso of the refracted arrival can be expected to fluctuate independently of  the 
amplitude A~ and phase q~R' of  the scattered return. Therefore, using Eq. (4), the 
random variables A a ,  q~R', and q}o are at least pairwise independent. I f  they can be 
considered totally independent, then the method outlined in the preceding paragraph 
applies. 

In this paper, the phase difference q~ will be considered, rather than the resultant 
phase ~ ' .  I f  (bo fluctuates and is known statistically or deterministically, then Eq. (8) 
can be used to relate the statistical behavior of  ~b' to that of  ~b. Otherwise, such 
knowledge of q~' cannot be obtained, so that the distribution of A is the only useful 
part  of  the solution to Eq. (7). I f  ~o is constant, then it is perhaps immaterial whether 
one examines (b' or ~ ,  since the phase reference is quite arbitrary as long as it remains 
fixed with respect to the phase of the radiation's source. 4 

Mod 27r indicates that G is taken as the difference @' -- @o mapped into the interval [--~r, ~r) by 
adding or subtracting the necessary integral multiple of 2~r from any value of the difference. Similarly 
for GR. 

4 In order to avoid mathematical difficulties in this last case, G' should be restricted to the interval 
--~r + Go < G' < ~r + Go instead of the interval exhibited in Eq. (3). The first equation in Eq. (8) 
can then be changed to an ordinary equation with the mod 2,r notation omitted. This practice 
assures that the graph for the probability density of G' is a single, horizontal translation of that for 
G through a distance of Go. Otherwise, a more complicated relationship between the probability 
densities would exist, which would be as artificial from a physical point of view as the choice of the 
interval for G'. 
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The strength of  an acoustic or electromagnetic-wave field is commonly  measured 
in any of  three units: the intensity, the amplitude,  and the decibel-amplitude. In this 
paper,  all three measures will be examined for  the total  field. The propert ies  of  their 
mean values, and also of  their s tandard deviations, can be quite different, as we will 
demonstrate .  

In  Section 2 of  this paper ,  the joint  probabi l i ty  density of  A and ~b is derived. 
Here,  the mean value of  �9 and the correlat ion between r and f ( A )  are determined, 
w h e r e f r e p r e s e n t s  any sufficiently integrable function. The mean values and s tandard 
deviations of  A and A 2, the latter being propor t iona l  to the intensity of  the total  field, 
are derived in Section 3. In  Section 4, the mean value of  20 log~o A, which is the resul- 
tant  decibel-amplitude, is examined, as are the s tandard deviations of  ~ and 20 logao A. 
A summary  follows in Section 5. 

2. T H E  J O I N T  D I S T R I B U T I O N  OF A A N D  ,1, 

Figure 1 is a vector  d iagram illustrating Eq. (7). One observes that  a t ransforma-  
t ion exists between the r a n d o m  variables (AR, q~R) and the variables (A, q~). In  
particular,  it can be shown f rom Eq. (7) that  

AR = ~R(A, ~b) ~ I(A cos ~b - -  Ao) 4- iA sin ~1 
= (Ao ~ --  2AoA cos ~ + A2) 1/~ (9a) 

~.e ~- ~R(A, q~) ~ arg[(A cos ~b --  Ao) + iA sin ~b] 

_ I - A r c  cos[(A cos r _ Ao)(Ao~ _ 2AoA cos r + A~)-I/~] for  --Tr ~ ~b < 0, 
IArc cos[(A cos ~ - -  Ao)(Ao ~ --  2AoA cos ~b q- A~)-I/2] for  0 ~< q) < 7r 

(9b) 

Therefore,  the joint  probabi l i ty  density of  A and r which is denoted by p(a, ~), 
is given by 

p(a, ~) = t[6~R(a, ~), ~R(a, ~)][ J(a, ~)T (10) 

where J is the Jacobian of  the t ransformat ion  in Eq. (9). It  can be shown that  ~ 

e(~., ~.) a (11) J(a, ~) ~ O(a, 9~) - -  ~1r (~) 

5 In deriving Eq. (11), it is convenient to treat the transformation in Eq. (9) as a system of two equa- 
tions: AR cos r = A cos r _ A0 and AR sin r = A sin q~. 

Ao 

Fig. 1. Vector diagram of random-walk problem. 



Statistics of a Random Plus Constant Vector with Application 283 

From Eqs. (4), (5), and (9)-(11), we obtain 

t agr[(A~ - -  2Aoa cos r + aZ) 112] 
p(a, + ) =  I0 ~ - - - 2 ~ ~  c - ~  +---a2~i~ 

for a~>0,  - - r r~<r  

for a or r elsewhere 
(12) 

From Eq. (12), p(a, ~) is observed to be an even function of r Therefore, 

f'S -- Cp( , r de  da = o 
0 ~ r r  

(13) 

where E denotes mathematical expectation. More generally, 

E[+f(A)] ~- f [  f(a)[f[~, +p(a, ~D)d~D] da = 0  (14) 

where f is any function for which the integrand in Eq. (14) is absolutely integrable. 
Since �9 is the phase difference between the fixed and random components (recall 
footnote 4), Eq. (13) asserts that the mean resultant phase is just the phase of the 
fixed component, when ~o is constant. 

Equation (12) shows that the random variables A and q~ are generally dependent. 
However, from Eqs. (13) and (14), we obtain 

E[~f(A)] -- E(~) E[f(A)] = 0 (15) 

Therefore, the phase angle �9 is uncorrelated with f(A). In particular, we may wish to 
take f (A)  as the resultant decibel-amplitude 20 log10 A, the resultant intensity (which 
is proportional to AS), or just the resultant amplitude A itself. If r is constant, it is 
not difficult to show that Eq. (15) is also valid if the resultant phase ~ '  is substituted 
for q~ (recall footnote 4). 

In the remainder of this paper, the first and second moments of A, of A s, and 
of 20 log10 A, and the second moment of q~ are examined in terms of the distribution 
of AR �9 Although these moments may be derived from Eq. (12), it is more convenient 
to make use of Eq. (4). 

3. T H E  R E S U L T A N T  A M P L I T U D E  A N D  I N T E N S I T Y  

One observes that A is a function of the random variables AR and ~R, which we 
shall denote by 6/(AR, CR). Similarly, we denote the dependence of r by the function 
N(An, q~R). From Eq. (7), 6~ and ~ can be shown to be given by 

O[(aR , qSR) = I Ao + aR expqCR)l 

~(aR, CR) = arg[Ao + aR exp(/r 

(16a) 

(16b) 
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From Eq. (16a), 
cc 

E(A) = f f ,(aR , CR) 6g(aR , CR) d e .  da. 
--co --oo 

(17) 

From Eqs. (4)-(6) and (17), the mean amplitude of the total field is given by 

(18) 

Using Eq. (16a), it can be shown that 

~Y(aR, CR) = (Ao 2 + 2AoaR cos r + aR2)l/2 

= I Ao + ae I [1 -- 4AoaR(Ao + aR) -2 sin 2 �89 1/2 (19) 

Multiplying Eq. (19) by (27r) -1 and integrating with respect to r  it is observed after 
simplifying that 

f 
Tr 

(2rr)  -1 ~ ( a R ,  CR) dCR (2/~r)l A o + a R I . . . .  1/2 1/2 = okZAo aR [Ao + aR 1-1) (20) 
--zr 

where g(x) is the complete elliptic integral of the second kind. {~) From Eqs. (18) and 
(20), we obtain 

oo 
E(A) = f gT(aR)(Ao + a~)(2/rr) g[2(Aoan)l/2 (Ao + an)-q da~ 

0 
(21) 

Tables and approximations of g(x) are available/4) so that E(A) can be obtained from 
Eq. (21) if gz(aR) is specified. 

From Eq. (19), or using the law of cosines on Fig. 1, we have 

A 2 = Ao 2 -t- 2AoAR cos q5 R + AR 2 (22) 

Recalling that AR and q~e are independent random variables and noting that 
E(cos ~bR) = 0 [see Eqs. (4) and (5)1, we obtain from Eq. (22) 

E(A 2) = Ao 2 + E(AR 2) (23) 

The variance of the resultant amplitude is then obtained by subtracting the square of 
Eq. (21) from Eq. (23). 

Since intensity is proportional to amplitude squared, Eq. (23) serves to determine 
the mean intensity of the total field. In particular, the mean value of the resultant 
intensity is observed to be equal to the sum of the mean intensities of both components. 
By squaring Eq. (22) and taking the mean value of both sides of the resulting equation, 
we obtain 

E(A 4) = AO ~ -t- 4Ao2E(AR 2) + E(AR 4) (24) 
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where it is noted that E(cos 2 rbR) = �89 Then, subtracting the square of Eq. (23) from 
Eq. (24), the variance of the resultant intensity is found to be proportional to 

a2(A 2) = a~(AR ~) + 2Ao2E(Aa ~) (25) 

where a 2 denotes variance. 

4. R E S U L T A N T  D E C I B E L - A M P L I T U D E  A N D  PHASE 

From Eqs. (4)-(6), the mean of In A is given by 

c o  o~ 

E(ln A) --- f f t(a~ , CR) In tY(a~, r dCR dan 
- - o ~  - - o o  

= (2rr) -1 In e (an ,  r  dr  da.  
- - q r  

(26a) 

Similarly, the mean squares of In A and qb are given by 

El(In A)2] ----- (270-1 [ln ~(aR, CR)] 2 dCR daR (265) 
- - / t  

E(q )2) = (aR 2~r) -1 [~(aR, r =dr daR (26c) 

Subtracting the square of Eq. (26a) from Eq. (26b) yields the variance of In A. Simi- 
larly, the variance of qi is obtained from Eqs. (13) and (26c). The moments of the 
resultant decibel-amplitude are obtained from those of In A by noting that 

20 loglo A = (20/ln 10) In A (27) 

We now begin the treatment of the iterated integrals in Eq. (26) by first considering 
the integrations with respect to CR. These integrals are determined by examining 
contour integrations of the function (log z)/(z -- Ao) and (log z)2/(z -- Ao) in the 
complex plane. Only that branch of the complex logarithm function is considered 
for which --~r ~ Im(log z) < 7r, where Im denotes imaginary part. 

Figure 2 defines the contour _P in the complex plane. When aR < Ao, I" is just 
the circle I z -- Ao [ = aR , as shown in Fig. 2(a). However, when aR > Ao , 1" is the 
contour illustrated in Fig. 2(b), where the branch cut for the function log z is accounted 
for. In either case, Cauchy's integral formula implies 

f r (log z)/(z Ao) dz = 2~ri log Ao (28a) 

f r (log z)2/(z -- A o) dz = 27ri(i0g Ao) 2 (28b) 

The contribution to the integrals in Eq. (28)from the inner circle in Fig. 2(b) 
can be shown to vanish in the limit as its radius goes to zero. The integrals along the 
line segments connecting the inner circle to the outer one are expressed in Riemann 

8221213-6 
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(a] as<A o 

///1//~'.,,'/i/~ 

('b) aR >Ao 

Fig. 2. Contours of integration in the complex z-plane. 

integrals, noting that Ira(log z) = arg z ~ rr on the upper segment and --~- on the 
lower one. The integrals along the outer circle in Fig. 2(b), or along the circle in Fig. 
2(a), can be shown to be given by 

f1~-.4o!=~R (log z)/(z -- Ao) dz 

----- i In 6~(aR, ~R) d~R - -  ~(aR,  ~.)  dq~. (29a) 
- -T r  ~ r  

f r~-,%l=oR (log z)~/(z -- .40) dz 

, ('~. [~(aR, q~R)]' dq~n I = i  ' J - .  [In ~(an Cn)] ~ d~n -- j 

--  2 ~ ( an ,  ~n) In ~ ( a . ,  ~ .)  d~ .  (29b) 
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Equation (29) is derived from the relation 

log z = In Og(aR , ~R) q- i~(an , 4~R), I z -- Ao I = an (30) 

which is valid for all points z = Ao q- an exp(iq~n) on the circle I z -- Ao ] = an, 
and which follows from Eq. (16). 

Equating the imaginary parts of both sides of each of the equations resulting 
from the procedure outlined above, Eqs. (28a) and (28b) yield, respectively, 

(2rr) -1 f~ In 6/(an ~R) d~n = l In Ao for an < Ao (31a) 
_~ ' In an for an ~ Ao 

(2rr) -1 [In O/(an, ~R)] 2 d~n -- (27r) -1 [ga(an, ~n)] z d~n -- (In Ao) ~ 

I i  for aR < Ao 
= ,a~ (31b) 

j ;  x -~ ln(x -- Ao) dx for an > Ao 

Multiplying Eq. (31a) by gr(an), integrating with respect to an, and using Eqs. (26a) 
and (27), the mean decibel-amplitude is found to be 

E(20 log~o A) = (20 loglo Ao) gr(an) dan + (20/In 10) gr(an) In an dan (32) 
0 `4o 

Using this last equation, the mean decibel-amplitude can be shown to be given by 
either of the following two equations: 

f" 
E(20 loglo A) -~ 20 loglo Ao + (20/ln 10) gr(aR) ln(an/Ao) dan (33a) 

-4 0 

Ao 
E(20 lOglo A) : E(20 loglo An) + (20/ln 10) fo gT(aR) ln(Ao/an) dan (33b) 

Multiplying Eq. (31b) by (20/ln 10)~gr(an) and integrating with respect to an, we 
obtain, using Eqs. (26b) and (26c), 

E[(20 loga0 A) 2] -- (20 lOglo Ao) a -- (20/ln 10) 2 E(qOz) 

= 2(20/In 10) 3 ~ogr(aR)[f~R x -1 in(x -- Ao)dx] dan (34) 

Equation (34) relates the second moments of q~ and of 20 log10 A, although it does not 
evaluate them. Equations (33) and (34) will be examined next. 

Observe that the last term in Eq. (33b) is independent ofgr(an) for those values of 
aR > Ao. Similarly, Eqs. (33a) and (34) appear to be independent ofgr(aR) for values' 
of an < Ao �9 In order to illustrate the significance of these observations, two examples 
shall now be considered. In the first example, the amplitude An of the random compo- 
nent is assumed to be always larger than Ao of the fixed component. Therefore, 
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gr(aR) vanishes for aR <~ Ao and is otherwise arbitrary as a probability density, 
provided that the moments and integrals involved in the relevant equations exist. 
From Eq. (33b), we obtain s 

E(20 log10 A) = E(20 logz0 An), prob(An > Ao) = 1 (35) 

In the second example, An is assumed to always be smaller than Ao. From 
Eq. (33a), we have 

E(20 logz0 A) = 20 logz0 Ao, prob(AR < Ao) = 1 (36) 

Therefore, the mean decibel-amplitude of the resultant is equal to the decibel-amplitude 
of the fixed component, and is independen t of the distribution of AR. Furthermore, 
the right side of Eq. (34) is observed to vanish; and, using Eqs. (13) and (36), it can be 
shown that 

or(20 log10 A) = (20/In 10) ~(q)), prob(An < Ao) = 1 (37) 

where ~r denotes standard deviation. If ~o is constant, then q~' may replace q~ in the 
above equation. Therefore, the standard deviation of the resultant phase is just 
proportional to that of the resultant decibel amplitude. However, nothing quite as 
simple can be concluded from Eq. (34) when An is always larger than Ao. 

If  the event An > Ao is sufficiently improbable, then Eqs. (36) and (37) may serve 
as approximations, whose errors can be determined from the rightmost terms in 
Eqs. (33a) and (34). Similarly, Eq. (35) may approximate the more complicated rela- 
tionship in Eq. (33b) if the event An < Ao is sufficiently improbable. 

Equation (37) may be useful in determining the standard deviation of the received 
phase when only the resultant amplitude has been recorded in a propagation experi- 
ment. However, evidence would have to be present to indicate that prob(An < Ao) 
is equal to unity or sufficiently close to it. Equations (35) and (36) may be used to 
demonstrate some properties of a logarithmic amplifier when its output is averaged. 
In particular, the "noise" due to the randomly scattered arrivals is eliminated in the 
averaged output if AR does not exceed Ao. However, only the noise will be heard if 
An is always larger than Ao. 

It may be noted that the integrands of the rightmost terms in Eqs. (33a) and (33b) 
are nonnegative over the respective intervals of integration, so that the terms them- 
selves are nonnegative. Therefore, the mean decibel-amplitude of the total field is 
observed to be at least as large as that of either component. 

5. S U M M A R Y  

In this paper, an acoustic or electromagnetic-wave field is considered to contain 
just two components. The fixed component is taken to be constant in amplitude, while 
the random component is the result of incoherent scattering of the incident field. 

The notation prob(AR > Ao) denotes the probability of the event AR > Ao, so that the statement 
to the right of Eq. (35) indicates the condition under which the equation was derived. 
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The joint probability density of the phase angle ~ and the amplitude of the total 
field is derived in terms of the probability density of the amplitude of the random 
component. Although the resultant amplitude and angle q~ are observed to be 
dependent random variables, they are shown to have zero correlation. 

The first and second moments of the resultant intensity, the resultant amplitude, 
and the resultant decibel-amplitude are observed to behave somewhat differently from 
one another. It is known, for example, that the mean intensity of the total field is 
equal to the sum of the mean intensities of the components. However, if one com- 
ponent is always larger than the second, then the mean decibel-amplitude of the total 
field is shown to be equal to that of the larger component, and is independent of the 
smaller one. The mean and standard deviation of the resultant amplitude is given in 
terms of the amplitude of the fixed component, the probability density of the amplitude 
of the random component, and a complete elliptic integral of the second kind. 

I f  the phase of  the fixed component is a constant, then it is observed to be equal 
to the mean value of the resultant phase. If, in addition, the random component is 
always smaller than the fixed component, then the standard deviations of the resultant 
phase and the resultant decibel-amplitude are found to be proportional. 
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